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The irreversible loss of chemically active solutes by reactions at the boundary and the 
reversible adsorption on the flow boundary have been observed experimentally. 
Removal of solutes at the boundary alone reduces the rate of longitudinal shear 
dispersion; in contrast, the retention of solutes in the region close to the flow boundary 
alone increases the rate of longitudinal shear dispersion. Here an extension is given of 
the method of moments for chemically active solute dispersion to encompass this class 
of complications. Expressions are derived for the longitudinal shear dispersion 
coefficient and skewness. The results are applied to the practical example of a chemical 
flow reactor to quantify the effect of flow boundary retention when there exists reaction 
at the pipe wall. 

1. Introduction 
As understanding has advanced concerning the dispersion of passive (chemically 

inert) solutes, there has been increasing interest in the case of chemically active solutes. 
Plumb, Ryan & Barton (1983) have determined experimentally the rate of diffusion of 
oxygen atoms in flowing helium using a modification of Taylor’s (1953) dispersion 
theory for the case of passive solutes injected into flowing solvent. Evans & Kenney 
(1966) have calculated empirically the rate of diffusion of nitrogen gas injected into 
flowing hydrogen gas under conditions in which the nitrogen gas can also be exchanged 
by diffusion with a retentive layer of stagnant gas held within a porous solid structure. 
The significance of reversible adsorption of chemically active solutes on the flow 
boundary was observed by Clifford et al. (1982), when studying the diffusion of 
hydrogen atoms in flowing nitrogen and flowing argon; and it was noted that when an 
atom is adsorbed on the pipe wall, not only can it be lost by reaction, but it also has 
a high probability of returning back to the gas phase. Based on these laboratory 
investigations, Boddington & Clifford (1983) have emphasized both these important 
effects of irreversible loss of chemically active solutes by reactions at the flow 
boundary, and their reversible adsorption onto and desorption from the flow 
boundary. 

One obstacle to a general theory of the dispersion of chemically active solutes is the 
existence of various forms of boundary conditions used in representing processes 
occurring near the flow boundary. h rnama  (1988b) has proposed a generalized 
boundary condition of the form 

K I I - V C  = -,&-a, dTJ(T)C(t-T) On aA. (1.1) 
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The first term on the right-hand side represents an irreversible boundary reaction 
which reflects the effect of solute removal. (The case when /3 = 0 is usually referred to 
as the dispersion of passive solutes.) The second term represents the effect of flow 
boundary retention, which measures the amount of solute held in the stagnant region 
close to the flow boundary (this region will be referred to as the retentive layer). The 
kernel J( t )  determines the diffusive effect of the time lag between the solutes across the 
retentive layer. Some expressions for J( t )  are discussed in the Appendix. 

Removal of chemically active solutes via boundary reactions alone causes a small 
amount of slow-moving solute near the flow boundary to be left far behind as an 
extended tail, i.e. a tendency to develop a skewness towards the rear (Smith 1983). 
Similar features have also been observed for the dispersion of passive solutes, due to 
the effects of flow boundary retention (Purnama 1988~) .  Since such deviations from 
Gaussianity cannot be described by Taylor's (1 953) approach, the method considered 
here is to determine the values of the integral moments of the chemically active solute 
concentration c. This technique has been widely used (Barton 1984; Boddington & 
Clifford 1983) since knowledge of the first few moments of c gives great deal of 
information about c itself. For the dispersion of passive solutes, the method of 
moments (Aris 1956) gives rigorous justification for Taylor's (1953) heuristic approach 
to shear dispersion. 

2. Advection diffusion equation 
We start our analysis with the advection diffusion equation 

a, C+ U az C -  v * (KVC) = 0, (2-1) 

with the condition (1.1) at the flow boundary aA. Here u(y,z) is the longitudinal 
velocity along the x-axis, K( y, z) the transverse diffusivity tensor, V the transverse 
gradient operator (0, ay, a=), and n the outward normal. We have ignored the effect of 
longitudinal diffusion, on the assumption that after a short distance downstream it is 
dominated by shear dispersion (Taylor 1953). The loss of chemically active solutes by 
a first-order reaction in the flowing region can be included by adding a term -yc on 
the right-hand side of (2.1). However, this term may be removed by transforming to 
c = c'exp( -p), and so we can set y = 0 without loss of generality (Boddington & 
Clifford 1983). 

If we ignore the effect of flow boundary retention (J ( t )  = 0), then at steady state, 
(2.1) admits an exponentially decaying solution exp (-Ax). The combined effects of 
diffusion and flow boundary reaction are to erode the concentration variations towards 
the (non-negative) asymptotic profile $( y, z), which satisfies 

v * (Kv$) + A M $  = 0, (2.2a) 

with K?l*vl ,b=&h On aA, (2.2b) 
- 

and $ 2 =  1, (2 .24  

where the decay rate A, which determines the amount of solutes remaining in the flow, 
is given by 

$ denotes an integration around the flow boundary, the overbars denote the cross- 
sectional average values, and A is the cross-sectional flow area. 
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In order to examine the effect of flow boundary retention when there exists reaction 

(2.4) 

at the flow boundary, we make a change of dependent variable: 

c = Cy?( y ,  z)  exp ( -Ax) .  

In the axes moving with the bulk velocity 0, (4.6), the new variable C satisfies 

p a ,  c+ $yU- 0) a, c-v . (pKvc) = 0, ( 2 . 5 ~ )  

with y?2Kn.vc=-y?qIr2a,r+y?z8a,r on aA, (2.5b) 

where r represents the trapped solutes in the retentive layer 

d7J(t-7) C(x+ &,y,z,7).  r=l (2.5 c) 

In order to determine the large-time behaviour, we shall for simplicity restrict our 
attention to the case of an initial discharge with distribution I,+ across the flow: at 
t = 0 a unit amount of solute is released at the plane x = 0. We will also consider the 
retentive layer to be stagnant; as shown in the Appendix this is a good approximation 
to the Boddington & Clifford (1983) model. 

3. Some notation and the method of moments 
As shown by Purnama ( 1 9 8 8 ~ )  for the dispersion of passive solutes, and by using an 

appropriate composite cross-sectional averaging, the effects of the flow boundary 
retention can be incorporated into the conventional (no retention) Aris (1956) method 
of moments. Here we define the corresponding composite cross-sectional average value 
for the dispersion of chemically active solutes, which includes averaging over the 
retentive layer, as 

- 
C =  

1 +& , (3.1 a)  

where J ,  = i$$'/:d~J(7). A (3.1 b) 

The x-derivative in (2.5a, b) could be eliminated if we introduce the moments 

m 

C ,  = /-, dx xmC, 

with the composite cross-sectionally averaged moments 

d x x m c  (m = 0 , 1 , 2 , .  . .). 

( 3 . 2 ~ )  

(3 .2b)  

Taking moments of (2 .5~-c ) ,  we obtain a hierarchy of equations for successive C, : 

I,+' 3, C, - v - (I,PKVC,) = m+z(u - 6) c,-~, (3.3a) 

with y?%n - VC, = - ~ z a t r m - m y ? 2 U ~ m ~ l  on 3A, (3.3b) 
- 

m! ( ~ T , - ~ w ] ,  (3.3 c) 

r!(m - r)! 
where 

and C,, = 1 ,  C, = C, = ... = C, = 0 at r = 0. (3 .3d)  
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The successive M ,  evolve in accordance with - 
dt M ,  = m$'(u- U) Crnpl, (3.4) 

where the tilde denotes the composite cross-sectional averaging defined in (3.1 a, 6). 
Indeed, what has been achieved through the introduction of the composite cross- 
sectional averaging is the elimination of any explicit occurrence of terms associated 
with the retentive layer at the flow boundary. The considerable advantage of using the 
composite cross-sectional averaging is that many of the results from the conventional 
method of moments for the dispersion of passive solutes with no flow boundary 
retention can be transferred directly simply by replacing an overbar by a tilde (weighted 
with $,). Thus, as has been done by Purnama (1988~) for the dispersion of passive 
solutes, we can straightforwardly adapt any result of the conventional method of 
moments with no flow boundary retention. For example, if c,, denotes the asymptotic 
value of the first moment calculated using the conventional method of moments, then 
(cf. Smith 1981, equation (3.1)) 

M ,  = 2t(u - U) Zl , + 2 d 7 ( ~  - U) (TI -r1 ,). ( 3 . 5 ~ )  

The analogy with the dispersion of chemically active solutes (a tilde, weighted with $,, 
replacing an overbar) permits us to infer that 

l = 

- 
M2 = 21 $'(u - 0 Cl, + 2 (3.5b) 

4. First moment 
The use of composite cross-sectional averaging ensures that the pattern of calculation 

proceeds as in the conventional method of moments for the dispersion of passive 
solutes with no flow boundary retention. For large times To = 1 and the first moment 
is formulated by the conventional method of moments as (cf. Smith 1981, equation 
(4-1)) 

which satisfies the equation 
C A Y )  = g ( Y ) ?  

d , (Ka ,g )  = Zi-24, 

with K a y g = O  on aA, 

and g =  0. 

(4.1) 

(4 .2~)  

(4.2b) 
(4 .2~)  

By analogy with the above results, we can infer that at large times C, remains uniform 
across the flow and has the constant value M,,, = 1.  The corresponding form of the 
asymptotic first moment is given by 

C,,(Y, 2) = G(Y9 4, 
which satisfies the equation 

(4.3) 

V - ($2~VG)  = - @'(u- a, ( 4 . 4 ~ )  

with 

and 

d7 J(7) on aA, 

$'G = 0. 

(4.4b) 

(4.44 
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Next (4.3) also implies that, for large t ,  

that is, in axes moving with the bulk velocity 0, the centroid of the solute cloud 
remains stationary. Hence, from (3.4) with m = 1 ,  the bulk velocity can readily be 

d , M , ,  = 0, (4.5) 

determined by 

since the flow within the retentive layer is stagnant. 
The effect of chromatographic retention of chemically active solutes was first 

reported by Clifford et al. (1982) when measuring the diffusion coefficient of hydrogen 
atoms in flowing nitrogen and flowing argon. However, in their analysis of the 
experimental results (Clifford et al. 1982, equation (5 ) ) ,  they took iT, the mean gas 
carrier velocity, instead of q, which means that the bulk velocity 0 does not depend 
on the irreversible loss of the hydrogen atoms by reaction on the pipe wall. In the 
absence of the flow boundary retention (J(t) = 0), this is only true when p = 0 (passive 
solutes), and for the case of /3 =k 0 Sankarasubramanian & Gill (1973, figure 3) pointed 
out that the centroid distribution moves along at a velocity higher than the average 
velocity of the flow, ii (Smith 1983, figure 2; Barton 1984, figure 2). 

Plumb et al. (1983) reported that there was no evidence for a chromatographic effect 
when studying the diffusion of oxygen atoms in flowing helium. The value for the rate 
of loss of oxygen atoms by reactions at the walls is found typically to be 1.5 s-' (Plumb 
et al. 1983). Following the non-dimensionalization procedure used by Barton (1984), 
the value of pequivalent to Barton's (1984) is found to be of the order In contrast, 
following the work of Boddington & Clifford (1983, equation (1.6)), we deduce that a 
value of /3 equivalent to Barton's of 2 must have been used in the Clifford et al. (1982) 
analyses of their experimental results. As an illustrative example (§7), the value of p in 
the present work equivalent to Barton's is 4. 

5. Longitudinal shear dispersion 

of 2t in (3.56) gives us a formula for the longitudinal shear dispersion coefficient 
By analogy with the conventional case of dispersion of passive solutes, the coefficient - 

D = @(u- Clm, 

and from the definition of the tilde averaging (3.1 a, b), we find 

where 

(5.1 a) 

(5.1 b) 

(5.1 c) 

If we multiply ( 4 . 4 ~ )  by G(y,z) and integrate over the flow, then we can derive the 
identity 

$'(u- 0)G-z $'fiG d7 J(7) = @'K(VG)'. f Jom 
Thus, we can show that 

(1 +J,) D = $'K(VG)' + $4. (5.3) 
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FIGURE 1 .  The longitudinal dispersion coefficient D for Poiseuille pipe flow. 

This is strictly non-negative. For the dispersion of passive solutes (/3 = 0; $ = 1) with 
no flow boundary retention (J(t)  = 0), it reduces to the well-known Taylor (1953) 
longitudinal shear dispersion coefficient. 

For Poiseuille pipe flow with a radius a ($7) we obtain a formula for D, which only 
involves the velocity u(r), diffusivity K(r), and asymptotic concentration profile $(r) : 

(1 +J,)'D = 2 ~ ' l l d R l ( ( n d R R ' $ ~ ( ~ _ ~ ) ) P  0 R$K 0 

Here, (3.1b) and ( 5 . 1 ~ )  reduce to 

(5.4b, c) 

A similar result for the exchange between phases (gas and liquid) flowing in a pipe 
and its surrounding annulus has been formulated by Aris (1959) and Davidson & 
Schroter (1983). Using (7.7) and (7.8), ( 5 . 4 ~ )  becomes (Davidson & Schroter 1983, 
equation (B 13)) 

which may be obtained from Aris (1959, equations (17), (21) and (22)), where 

k =  1/(1+4) and b = l+ l /a .  

Figure 1 show the dependence of D in Poiseuille pipe flow ($7) upon l / a  for the 
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stagnant layer model (see the Appendix) with K~ = K .  Note that the value of D(l /a  = 0) 
decreases as the (dimensionless) wall reaction coefficient B increases. As was noted 
by Sankarasubramanian & Gill (1973, figure 4), Smith (1983, figure 7) and Barton 
(1984, figure 3), the effect of removing solutes at the flow boundary is to reduce the rate 
of shear dispersion. For very large B, this value is finally reduced to less than one-fifth 
of Taylor's value. 

In contrast, the effect of flow boundary retention alone at the pipe wall is to increase 
the rate of shear dispersion (Purnama 1988a, figure 3), and this dominant effect 
supresses the effect of flow boundary reaction provided B is not very large. For 
B = 4 in Poiseuille pipe flow (57) using the stagnant layer model (see the Appendix) 
with K~ = K ,  the longitudinal shear dispersion coefficient D is 55% greater than the 
value of D(l /a  = 0) for l / a  = 0.05. For large B, the effect of flow boundary retention 
is negligible. This is expected since, as shown in figure 3, there is so little solute close 
to the flow boundary. 

As an aid to the skewness calculation given in the next section, we proceed to the 
equation for C,. The form of the second moment can be made more precise at large 
t in the conventional case of the method of moments (cf. Daish 1985, equation (3.6)): 

- c,, = 2Et+2g2-22 ,  

4 /g , )  = (u - 8 s  - (u - u3 g,  
where g,(y)  satisfies 

(5 .5 )  

(5.6a) 

with Kayg2=0 on aA, (5.6b) 

and g, = 0. ( 5 . 6 ~ )  

Again by analogy with these results, replacing an overbar by a tilde (weighted with 
$,), the corresponding form of the asymptotic second moment is gwen by - 

C,, = 2Dt + 2G, - 2$'G2, (5.7) 

where the corresponding G,(y, z )  satisfies the equation - 
V . ($'KVG,) = $'($'(u - v) G - (U - O G ) ,  (5.8a) 

with $2Kn. VG, = -$'(D+ ~ ~ ) ~ d 7 J ( 7 ) + $ " ~ ~ ~ d 7 7 ~ ( 7 )  on aA, (5.8b) 

and $'G, = 0. (5.8 c) 
- 

6. Skewness 
A linear growth of the variance with time is not sufficient to ensure that the 

distribution of solute concentration is Gaussian. Purnama (1988a, figure 9) has shown 
for the dispersion of passive solutes that the flow boundary retention alone is 
responsible for the skewness of concentration distributions. 

Now proceeding to the calculation of the higher-order moments, with m = 3 in (3.4) 
and from (5.7), at large t ,  finally we have 

(6.1 a) dt M, ,  = 6S, 



270 A .  Purnama 

0.001 - 

'.... .._. 
0 -  

13 

Y 
3 

+? -0.001 - B 
W 

g -0.002 - 
m 

-0.003 - 

-0.004 I I 1 I I 
0 0.02 0.04 0.06 0.08 0.10 

Retentive layer depth, Ila 

FIGURE 2. The skewness coefficient S for Poiseuille pipe flow. 
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FIGURE 2. The skewness coefficient S for Poiseuille pipe flow. 

where the skewness coefficient S is given by 

( l + J , ) S =  

(6.1 c) 

The increase in complexity of G,(y, z) deters us from continuing the analysis to even 
higher-order moments. The usefulness of (6.1 b) depends upon the ease with which we 
can manipulate G(y,z ) .  From (4.4a-c) and (5.8a-c), we can derive the identity 

$'(u - 0) G, = +'(u - 0) G2 - f $$'[C( fiG + D )  - fiG,] d7 47) Iom 
This enables us to eliminate G,(y, z) in (6.1 b): 

+A @-"0(20G-D) d7747)-:$4. (6.3) 'I 
The skewness S,, defined by (Boddington & Clifford 1983, equation (7.10)) 

S, = 6St/(2DQ3", (6.4) 
eventually decays at the slow rate of t - ' /2.  Figure 2 shows the dependence of S in 
Poiseuille pipe flow ($7) upon l /a  for the stagnant layer model (see the Appendix) with 
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K~ = K.  In the absence of the flow boundary retention (J(t) = 0), Smith (1983) pointed 
out that for Poiseuille pipe flow, the effect of flow boundary reaction alone is to reduce 
and change the sign of the skewness. Similar features have also been observed for the 
dispersion of passive solutes, due to the effects of flow boundary retention (Purnama 
1988a). For very large B, we expect that the effect of flow boundary retention is 
negligible; since removal of solutes at the boundary increases p, the variation of 
u-@ across the flow tends to be decreased (figure 4). 

7. Poiseuille pipe flow 
An application for the present work is to the flow reactor, a device for measuring 

reaction rates for chemical reactions taking place in a mixture of fluids (Clifford et al. 
1982; Plumb et al. 1983). The flow reactor consists of a circular pipe of radius a 
through which a fluid flows. The main flow velocity profile takes the form 

where R = r/a. 
u(R) = 2 q l -  R2), (7.1) 

The asymptotic concentration profile equation (2.2a, b) transforms to 

( 7 . 2 ~ )  
1 iia2 
R K 
-aR(R a R  $) + 2h- (1 -R2) $ = 0, 

(7.2b) with 2 $ I R $  = -p$ on R = 1. 

For simplicity, we will take the (dimensionless) pipe wall reaction coefficient B such 
that 

A convenient feature of this special case is that there are simple explicit formulae for 
$(R), A, and 8: 

K 

B = aB/K = 4. (7.3) 

(7 -4) 
$ ( R ) = ( s r 2 e x p ( - R 2 ) ,  h = 2 -  K U = i i - -  - e2+1 1 

e2- 1(1 +A)'  e -1 a2ii' 

The asymptotic concentration profile $(R) is shown in figure 3. The effect of the 
efficient removal of solutes at the flow boundary is to bring the concentration close to 
zero at the pipe wall (Sankarasubramanian & Gill 1973; Smith 1983). 

To quantify the effect of flow boundary retention when there exists reaction at the 
pipe wall, we need to evaluate G(R). Unfortunately, it is not possible to express G(R) 
in closed form: 

where 

Ua2 [ 1 exp(-2R2)-1 

-3) 
dR 1 -exp (2R2) 

J: K 8 e2-1 (e2 - 1)' R (e2 - 1)2 R 

1 - exp (2R2) ea exp(-2R2)- 1 
(ea-l)R - T l d R  (e2-1)R 

g(0) = - - +- dR - -- 

1. (7.66) 
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FIGURE 3. The asymptotic concentration profile 1/1 across the flow for Poiseuille pipe flow. 
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However, we can evaluate (7.6) numerically: 

@a2 
g(O) = -(0.04873), K 

11a2 
fl0) = -(0.20451). 

K 

For comparison, the corresponding result for the dispersion of passive solutes with 
flow boundary retention is 

11a2 iia' 
2 4 ~  (1 +J,) G(R) = (2 - 6R2 + 3R4) +J, - (5  - 12R2 + 3 R4). (7.7) 
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For the stagnant layer model with K~ = K, we have from the Appendix 

(7.8 b)  

(7.8 c )  

Figure 4 shows the variation of G(R) across the flow. For chemically active solutes, the 
effect of flow boundary retention is supressed by the removal of solutes at the boundary 
because the variation of u - p  across the flow decreases as B increases. 

8. Concluding remarks 
We have generalized the method of moments to account for dispersion of chemically 

active solutes in the presence of both reactions and retention at the flow boundary. The 
effect of flow boundary retention is represented by the kernel J( t ) ,  which embodies the 
totality of motion and mixing within the retentive layer. We have showed that the 
longitudinal shear dispersion coefficient D is increased and the skewness S, is decreased 
as the retentive layer depth increases, provided that the effect of chemical reaction at 
the flow boundary is not very large. 

Although the widely used method of moments gives a great deal of information 
about the distribution of solute concentration across the flow as it - disperses, it has the 
disadvantage that it does not give a direct expression for C or $'C. For chemically 
active solutes, Barton (1984) has shown that we can also use the large-time Chatwin 
(1970) asymptotic expansion for F C .  Again by analogy with the results of Smith 
(1 98 1, appendix), we infer that, at large time, 

with 2 = (x- Qt)/(2D?)l/Z, (8.2) 

He,(Z) = Z 3 - 3 2 ,  He,(Z) = 26-1524+45Z2-15 .  (8.3) 

and He, and He, are Hermite polynomials defined by 

The series (8.1) is believed to be asymptotic rather than convergent, and unfortunately 
it may give negative values (figures 5 and 6), particularly near the tails where higher- 
order terms decrease in a somewhat irregular manner. The first term is the Gaussian 
function, and the succeeding terms describe the departure from the Gaussian profile. 

Conventionally, the asymptotic form is achieved after 3e-folding times, the time for 
cross-sectional mixing. By analogy with the results of Purnama (1988a, Q7), the e- 
folding time T, can be formulated as 

( 8 . 4 ~ )  

and the corresponding 
variation is given by 

e-folding distance for the decay of transverse concentration 

z, = UT,. (8.4b) 
- 
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In the absence of flow boundary retention (J(t)  = 0), Smith (1983) shows that - for Poiseuille pipe flow, T,(l/a = 0) is a decreasing function of ,%; and at ,% = 0, 
T,(l/a = 0 )  = +,. 

The asymptotic profiles of F C  in Poiseuille pipe flow ($7) at 9T( l /a  = 0) and at 
9 O T ( l / a  = 0) are shown in figures 5 and 6 respectively for the stagnant layer model 
(see the Appendix) with K~ = K .  As the retentive layer depth is increased the extended 
tail becomes more and more pronounced. 

The work was undertaken while the author was a research student at the University 
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Appendix. Kernel J(t)  for the stagnant layer model 
In their study of the dispersion of hydrogen atoms in a flowing gas along the tube, 

Boddington & Clifford (1983, equations (1.6) and (1.7)) formulated the boundary 
condition at the tube wall as 

where the wall concentration c, changes at a rate given by 

K a , C  =-pC-a,C,, (A 1 4  

a,c, = klc-k,c,. (A lb) 

Here k, and k, are the rate of adsorption on and desorption from the tube wall, 
respectively. On integrating (A 1 b), we can rewrite (A 1 a): 

Ka,c = -,!?c-kla, d~c ( t -~ )exp( -k ,~ ) .  (A 2 4  s: 
Hence, from (1-1), we deduce that, for the Boddington & Clifford (1983) model, 

J(t)  = k,exp(-k,t). (A 2b) 

In the stagnant layer (annulus) of depth 1 surrounding a pipe of radius a, the solute 

a, c1 - (1 / r )  ar(K1 r a, cZ) = 0, (A 3 4  

with c , = c  on r = a ,  (A 3b) 
and a,c,=O on r = a + l ,  (A 3 4  

and, initially, c1 = 0, t = 0. (A 3 4  

concentration c, satisfies 

For the case of constant molecular diffusivity K ~ ,  the solution can be found using 
Laplace transforms : 

P, = Jrdrc,(r)exp(-pr). 

By taking the Laplace transform of (A 3u-d), we obtain 

4, = P / K P  I 
where Zo, ,(qr), KO, ,(qr) are modified Bessel functions, and we have used the recurrence 
relations (Abramowitz & Stegun 1965, equation (9.6.27)) 

q ( r )  = Il(r) ,  Kh(r) = -Kl(r) .  (A 5) 

At r = a, we also have the boundary condition 

thus 
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On comparison with the Laplace transform of (l . l) ,  we deduce that 

As our limited concern here is to determine the form of the kernel at large times, 
we shall extract the small-p behaviour from (A 6). Using the series expansion for 
the modified Bessel functions (Abramowitz & Stegun 1965, equations (9.6.12) and 
(9.6.13)), (A 6) reduces to 

where 

4P) = -(P+@P)/(l +UP), 

(A 7) I p = - - (  t12 + / / a ) ,  CT = (a3/4~,)  (1 + l /a) ,  In (1 + l /u) ,  

w = (a2/4q) [2( 1 + In (1 + f / a )  - ( / / a )  (2 + ,/a)]. 

Using the Inversion theorem, we have, for the stagnant layer model, 

with 

1; d7 47) = - p, 1; d7 747) = - pw + CT, d7 ?J(T) = - 2( pw2 - CTOJ). (A 9) 

To determine the stagnant layer depth 1, we seek to approximate k, and k, from the 
Boddington & Clifford (1983) model. If the bulk velocity and longitudinal shear 
dispersion coefficient are to be correctly reproduced, then the integrals 

r 
lom d7 J(7) and JOm d7 747) 

need to be correct: 
kl  = -pk, ,  k, = p / (  pw - CT). 

Next, using the experimental parameters obtained by Clifford et al. (1982, tables 2 
and 3), 

-_ 2k1 x 0.11, 
ak2 

we estimated that, from (A 7) and (A lo), the equivalent stagnant layer has a depth of 

1la x 0.05. 
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